Функции - определение. Что такое Функции
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Функции - определение

Сужение; Расширение функции; Продолжение функции; Сужение и продолжение функции
Найдено результатов: 649
ФУНКЦИИ      
в математике , см. Функция.
Функции      
I Фу́нкции

в математике, см. Функция.

II Фу́нкции (от лат. functio - исполнение, совершение)

физиологические, осуществление человеком, животными и растительными организмами различных отправлений, обеспечивающих их жизнедеятельность и приспособление к условиям окружающей среды, физиология изучает Ф. организма на молекулярном, клеточном, тканевом, органном и системном уровнях, а также на уровне целостного организма. К числу т. н. системных Ф. животного организма относятся, например, дыхательная, сердечно-сосудистая, пищеварительная, зрительная, слуховая, вестибулярная. Поскольку в основе любой Ф. лежит непрерывно идущий процесс обмена веществ (См. Обмен веществ), их исследование предусматривает выяснение происходящих в организме (системе органов, отдельном органе, ткани и т.д.) физических, химических и структурных изменений. В связи с этим существенное значение приобретают работы в области биологии развития (См. Биология развития), изучающей процессы и движущие силы индивидуального развития организма - Онтогенеза.

Важную роль в комплексном изучении Ф. сыграл сравнительно-исторический метод, привнесённый в физиологию И. М. Сеченовым, И. П. Павловым, Н. Е. Введенским (См. Введенский). Трудами Л. А. Орбели и его школы было создано оригинальное направление, изучающее физиологические, биохимические и структурные основы эволюции Ф., - Эволюционная физиология. В свою очередь исследования эволюции Ф. оказали влияние на изучение изменений Ф., наступающих в организме под влиянием различных факторов природного или искусственного происхождения (изменения климатических условий, двигательной активности, состава и свойств пищи, недостаток или избыток кислорода в воздухе, невесомость и многое др.), а также адаптации организма к условиям внешней среды (см. Экологическая физиология). Изучение эволюции Ф. и особенно их приспособляемости к окружающей среде неразрывно связано с исследованием механизмов регуляции Ф. (см. Гуморальная регуляция, Гормональная регуляция, Нейро-гуморальная регуляция (См. Нейрогуморальная регуляция)). Важный этап в изучении Ф. - созданная К. М. Быковым и его школой концепция о взаимоотношениях коры больших полушарий головного мозга (См. Кора больших полушарий головного мозга) и внутренних органов (см. Кортико-висцеральные отношения). Развитие этой концепции позволило вплотную подойти к разработке проблемы управления деятельностью висцеральных, т. е. внутренностных, систем организма, основанной на представлении об этой деятельности как особой форме поведения. Имеется в виду, что Ф. висцеральных систем, как и поведение организма в целом, всегда адаптивны, развиваются в достаточно строгой последовательности отдельных составляющих их основу реакций, а также обладают способностью к "обучению" (совершенствованию). Исследования в этом направлении имеют своей задачей познание механизмов и закономерностей регуляции Ф. организма с целью активного вмешательства в процесс нормализации его жизнедеятельности в случае отклонений от нормы, в том числе и в экстремальных условиях.

Лит. см. при ст. Физиология животных и человека.

В. Н. Черниговский,

К. А. Ланге.

Сужение функции         
Сужение функции на подмножество X её области определения D\supset X — функция с областью определения X, совпадающая с исходной функцией на всём X.
Функции параболического цилиндра         
  • График функций Эрмита с отрицательным целым индексом
  • График функций Эрмита с положительным индексом
Фу́нкции параболи́ческого цили́ндра (функции Вебера) — общее название для специальных функций, являющихся решениями дифференциальных уравнений, получающихся при применении метода разделения переменных для уравнений математической физики, таких как уравнение Лапласа, уравнение Пуассона, уравнение Гельмгольца и др. в системе координат параболического цилиндра.
Бесселя функции         
  • График функции Бесселя первого рода J
  • График функции Бесселя второго рода N
  • ''n'' {{=}} 0, 1, 2}}
  • ''n'' {{=}} 0, 1, 2}}

Цилиндрические функции 1-го рода; возникают при рассмотрении физических процессов (теплопроводности, диффузии, колебаний и пр.) в областях с круговой и цилиндрической симметрией; являются решениями Бесселя уравнения (См. Бесселя уравнение).

Б. ф. Jp порядка (индекса) р, - ∞ < p < ∞, представляется рядом

сходящимся при всех х. Её график при х > 0 имеет вид затухающего колебания; Jp (x) имеет бесчисленное множество нулей; поведение Jp (x) при малых |х| даётся первым слагаемым ряда (*), при больших х > 0 справедливо асимптотическое представление

в котором отчётливо проявляется колебательный характер функции. Б. ф. "полуцелого" порядка р = n + 1/2 выражаются через элементарные функции; в частности,

Б. ф. Jp pnx/l) (где μpn - положительные нули Jp (x), р > -1/2) образуют ортогональную с весом х в промежутке (0, l) систему (см. Ортогональная система функций).

Функция J0 была впервые рассмотрена Д. Бернулли в работе, посвященной колебанию тяжёлых цепей (1732). Л. Эйлер, рассматривая задачу о колебаниях круглой мембраны (1738), пришёл к уравнению Бесселя с целыми значениями р = n и нашёл выражение J"(x) в виде ряда по степеням х. В последующих работах он распространил это выражение на случай произвольных значений р. Ф. Бессель исследовал (1824) функции Jp (x) в связи с изучением движения планет вокруг Солнца. Он составил первые таблицы для J0(x), J1(x), J2(x).

Лит.: Ватсон Г. Н., Теория бесселевых функций, пер. с англ., ч. 1-2, М., 1949; Лебедев Н. Н., Специальные функции и их приложения, 2 изд., М.- Л., 1963; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции, функции Бесселя, функции параболического цилиндра, ортогональные многочлены, пер. с англ., М., 1966.

П. И. Лизоркин.

Функции Бесселя         
  • График функции Бесселя первого рода J
  • График функции Бесселя второго рода N
  • ''n'' {{=}} 0, 1, 2}}
  • ''n'' {{=}} 0, 1, 2}}
Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:
Коллизия хеш-функции         
АМБРОЗИЯ
Коллизия хэш функции; Коллизия хэш-функции
Колли́зия хеш-фу́нкции — два различных входных блока данных x и y для хеш-функции H таких, что H(x) = H(y).
Функции Ганкеля         
Фу́нкции Ха́нкеля (Га́нкеля) (функции Бесселя третьего рода) — линейные комбинации функций Бесселя первого и второго рода, а следовательно, решения уравнения Бесселя. Названы в честь немецкого математика Германа Ханкеля.
Нечётная функция         
  • <math>f(x) = x^3,</math> нечётная
  • <math>f(x) = x^3+1</math> ни чётная, ни нечётная
  • <math>f(x) = x^2</math> — пример чётной функции
ФУНКЦИИ, ОБЛАДАЮЩИЕ СИММЕТРИЕЙ ОТНОСИТЕЛЬНО ИЗМЕНЕНИЯ ЗНАКА АРГУМЕНТА
Нечётная функция; Чётные и нечётные функции; Четность функции; Четная функция; Чётная функция; Нечетная функция; Нечетные и четные функции; Четные и нечетные функции; Нечётные и чётные функции

функция, удовлетворяющая равенству f (-x) = -f (x). См. Чётные и нечётные функции.

Чётность функции         
  • <math>f(x) = x^3,</math> нечётная
  • <math>f(x) = x^3+1</math> ни чётная, ни нечётная
  • <math>f(x) = x^2</math> — пример чётной функции
ФУНКЦИИ, ОБЛАДАЮЩИЕ СИММЕТРИЕЙ ОТНОСИТЕЛЬНО ИЗМЕНЕНИЯ ЗНАКА АРГУМЕНТА
Нечётная функция; Чётные и нечётные функции; Четность функции; Четная функция; Чётная функция; Нечетная функция; Нечетные и четные функции; Четные и нечетные функции; Нечётные и чётные функции
Нечётными и чётными называются функции, обладающие симметрией относительно изменения знака аргумента. Это понятие важно во многих областях математического анализа, таких как теория степенных рядов и рядов Фурье.

Википедия

Сужение функции

Сужение функции на подмножество X {\displaystyle X} её области определения D X {\displaystyle D\supset X}  — функция с областью определения X {\displaystyle X} , совпадающая с исходной функцией на всём X {\displaystyle X} .

Сужение функции f {\displaystyle f} на X {\displaystyle X} обычно обозначается f | X {\displaystyle f|_{X}} или f | X {\displaystyle f|X} . Так, для f : A B {\displaystyle f:A\to B} , и X A {\displaystyle X\subset A} , g = f | X {\displaystyle g=f|_{X}} означает, что g : X B {\displaystyle g:X\to B} и g ( x ) = f ( x ) {\displaystyle g(x)=f(x)} для любого x X {\displaystyle x\in X} .

Что такое ФУНКЦИИ - определение